
• total conductance (                              )  constant

Conclusions 
 • accurately predict excitatory and inhibitory conductance tuning from spikes
 • nonlinear characterization of inputs improves prediction accuracy
 • model produces adaptive behavior: stimulus-dependent time constant

Inferring synaptic conductances from spike trains with a biophysically inspired point process model
Kenneth W. Latimer1, E. J. Chichilnisky3, Fred Rieke4, and Jonathan W. Pillow1,2

Motivation
 Generalized linear models: tractable descriptive models of spike responses

 Problems:  1) lack clear biophysical interpretation, accuracy
         2) do not generalize well over stimulus conditions

filter

Voltage linear in the stimulus!

Conductance-based spiking model (CBSM)
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Conductance nonlinearity
 • macaque on-Parasol retinal ganglion cells (Trong & Rieke, 2008)
  • full-field, single contrast white noise stimulus (0-60Hz), 6s trials
 • recorded from same cell spikes, inhibitory and excitatory currents
     - cell-attached and whole-cell voltage clamp recordings (10kHz sampling)
 • conductances well-described by rectified linear function of stimulus
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Classic GLM

where

fixed
values:

parameters
to estimate:

- excitatory and inhibitory inputs are not linear in real neurons
- model conductances as independent LN models
- stimulus-dependent gain (time constant)

Maximum likelihood fitting
 • conjugate-gradient methods converge to true filters using simulated data
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Responses at multiple contrast levels
  • simulated from fixed conductance model, fit linear filter with GLM
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(Chander & Chichilnisky, 2001)

experimental data

Extracellular recordings: comparison to GLM
 • ML fit to 5min recording of macaque RGCs, binary noise (Pillow et al., 2005) 
 • conductance model provides better fit to 7s repeat stimulus
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Inferring inputs in retinal ganglion cells
 • model fit to spikes, compared to intracellularly recorded inputs (scaled)

250ms

fit to conductance:
fit to spikes:

fit to conductance:
fit to spikes:

time (ms)

w
ei

gh
t

(spikes)
(conductances)

(spikes)
(conductances)

time (ms)

0 50 100 150 200
−0.3

−0.2

−0.1

0

0.1

0.2

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

w
ei

gh
t

10
nS

250ms

cell 1

cell 2

predictions (new 6s stimulus)filters

50 100 150 200
−0.8

−0.4

0

0.4

0

(fit)
(true)

(fit)
(true)

solve on discrete lattice 

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
spike fit 

exctitatory prediction inhibitory prediction

population summary 
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Biophysical interpretation of the GLM
• passive membrane dynamics:

•     and     are linear functions of the stimulus:

excitation and inhibition have equal and opposite tuning:

Integrating        gives 

Add Poisson spiking to get a GLM:

(Mensi, Naud, & Gerstner, 2011)

Relax the constraints

excitatory inhibitory
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